
CANBus Example
This library gives the user the ability to easily make use of some CAN Bus functionality. The library is optimized
for object oriented programming with Structured Text and graphical programming with languages like CFC.
Therefore it uses internally the system library CAN Bus Low Level.

Product description

Licensing:

No license is required.

This is an easy to use library for CANBus which internally uses the system library CANBus as base. Two
example programs with a different implementation (object oriented in ST and graphical in CFC) are provided
together with this library.

1. Interface IMessageProcessor

All received messages are passed to the MessageProcessor. The method ProcessMessage of
IMessageProcessor must be implemented by the user.

Methods:

ProcessMessage Process the received CAN telegrams here.

1.1. ICANDriver

CANDriver_11bit and CANDriver_29bit implement this interface. CANSender, CANMaskReceiver,
CANAreaReceiver and CANBusDiagnosis expect a CANDriver instance that implements the ICANDriver
interface.

2. Graphical POUs

The following function blocks are optimized for programming in graphical languages e.g. CFC.

2.1. CANDriver_11bit (FB)

The CANDriver can handle frames with 11bit CAN-IDs. If a CAN Sender gets instantiated with this driver all
messages are sent in 11 bit frames. Any receiver instantiated with this driver will only receive frames with 11 bit
CAN-IDs. In case of a Bus Alarm it’s possible to reset the driver through xResetBusAlarm.

Input:

xEnable BOOL TRUE: action running FALSE: action stopped, outputs xDone, xBusy, xError,
eError, xBusAlarm are reset

xResetBusAlarm BOOL TRUE: Reset the Bus Alarm (applies only if the Bus Driver is in alarm state).

In_Out:

DriverConfig DRIVER_CONFIG Information to setup the CANbus Driver

CANBus Example

1/10



Output:

xDone BOOL Action successfully completed

xBusy BOOL Function block active
xError BOOL TRUE: error occurred, function block aborts action FALSE: no error
xBusAlarm BOOL Indicates if a Bus Alarm occurred
eError ERROR Error codes

2.2. CANDriver_29bit (FB)

This CANDriver can handle frames with 29bit CAN-IDs and 11bit CAN-IDs. If a CAN Sender gets instantiated
with this driver, messages will be sent either as 11 bit or 29 bit frames, depending on the xIs29BitMessage flag
of MESSAGE. If the flag is TRUE, messages are sent as 29bit frame. Any receiver instantiated with this driver
can receive 11 bit and 29 bit CAN-ID frames. In case of a Bus Alarm it’s possible to reset the driver through
xResetBusAlarm.

Input:

xEnable BOOL TRUE: action running FALSE: action stopped, outputs xDone, xBusy, xError,
eError, xBusAlram are reset

xResetBusAlarm BOOL TRUE: Reset the Bus Alarm (applies only if the Bus Driver is in alarm state).

In_Out:

DriverConfig DRIVER_CONFIG Information to setup the CANbus Driver

Output:

xDone BOOL Action successfully completed
xBusy BOOL Function block active
xError BOOL TRUE: error occurred, function block aborts action FALSE: no error
xBusAlarm BOOL Indicates if a Bus Alarm occurred
eError ERROR Error codes

2.3. CANSender

CANSender will send messages over a CANDriver. It is possible to send frames with 29 bit and 11 bit frames.
This depends on the CAN Driver used for instantiating the CAN Sender. A CAN Sender instantiated with a
29BitCANDriver is able to send 11 bit messages as well as 29 bit messages. The sending method is defined by
setting the xIs29BitMessage flag of MESSAGE. An 11BitCANDriver can only send 11 bit messages. If
CANSender uses an 11bit driver an error is returned when xIs29BitMessage of MESSAGE is TRUE.

Input:

xExecute BOOL Rising edge: Action start, Falling edge: Resets outputs If a falling edge occurs
before the function block has completed its action, the outputs operate in the
usual manner.

itfCANDriver ICANDriver Messages are sent with this driver

In_Out:

Message MESSAGE Message information and data.

Output:

xDone BOOL Action successfully completed
xBusy BOOL Function block active

CANBus Example

2/10



xError BOOL TRUE: error occurred, function block aborts action FALSE: no error
eError ERROR Error codes

2.4. CANSingleIdReceiver

Generates a receiver for filtering a single CanId. If a time limit is set, the receiver will receive in each cycle
messages until the time is up. It there is no time limit set (tTimeLimit:- 0), the receiver receives messages until
the receiver buffer is empty. If the time limit is too small it might be that not all received messages are
processed and therefore the buffer gets smaller until there are no free message handles left. Received
messages will be passed to the MessageProcessor. All message information will be available there. The
MessageProcessor must be implemented by the user.

Input:

xEnable BOOL TRUE: action running FALSE: action stopped, outputs
xDone, xBusy, xError, eError are reset

itfCANDriver ICANDriver An Mask Receiver will be created for this CAN Driver
itfMsgProcessor IMessageProcessor Processed the message information. The user must

implement the Message Processor.
tTimeLimit TIME The time limit for reading messages.

(T#0s means no time limit)

In_Out:

SingleId RECEIVER_SINGLE_ID Filter criteria for the receiver

Output:

xDone BOOL Action successfully completed
xBusy BOOL Function block active
xError BOOL TRUE: error occurred, function block aborts action FALSE: no error
eError ERROR Error codes

2.5. CANMaskReceiver

This receives messages according to a specific Bit Mask. If a time limit is set, the receiver will receive in each
cycle messages until the time is up. It there is no time limit set (tTimeLimit:- 0), the receiver receives messages
until the receiver buffer is empty. If the time limit is too small it might be that not all received messages are
processed and therefore the empty part of the buffer gets smaller until there are no free message handles left.

Received messages will be passed to the MessageProcessor. All message information will be available there.
The MessageProcessor must be implemented by the user.

Input:

xEnable BOOL TRUE: action running FALSE: action stopped, outputs
xDone, xBusy, xError, eError are reset

itfCANDriver ICANDriver An Mask Receiver will be created for this CAN Driver
itfMsgProcessor IMessageProcessor Processed the message information. The user must

implement the Message Processor.
tTimeLimit TIME The time limit for reading messages.

(T#0s means no time limit)

CANBus Example

3/10



In_Out:

Mask RECEIVER_MASK Filter criteria for the receiver

Output:

xDone BOOL Action successfully completed
xBusy BOOL Function block active
xError BOOL TRUE: error occurred, function block aborts action FALSE: no error
eError ERROR Error codes

2.6. CANAreaReceiver

This receives messages for a range of CAN-IDs. Please note that the Area Receiver only allows 11bit CAN-IDs.
If a time limit is set, the receiver will receive in each cycle messages until the time is up. It there is no time limit
set (tTimeLimit:- 0), the receiver receives messages until the receiver buffer is empty. If the time limit is too
small it might be that not all received messages are processed and therefore the empty part of the buffer gets
smaller until there are no free message handles left. Received messages will be passed to the
MessageProcessor. All message information will be available there. The MessageProcessor must be
implemented by the user.

Input:

xEnable BOOL TRUE: action running FALSE: action stopped, outputs
xDone, xBusy, xError, eError are reset

itfCANDriver ICANDriver An Area Receiver will be created for this CAN Driver
itfMsgProcessor IMessageProcessor Processed the message information. The user must

implement the Message Processor.
tTimeLimit TIME The time limit for reading messages.

(T#0s means no time limit)

In_Out:

Area RECEIVER_AREA Filter criteria for the receiver

Output:

xDone BOOL Action successfully completed
xBusy BOOL Function block active
xError BOOL TRUE: error occurred, function block aborts action FALSE: no error
eError ERROR Error codes

2.7. CANBusDiagnosis

CAN Bus Diagnosis delivers a structure of diagnostic information about a CAN Bus Driver.

Input:

xEnable BOOL TRUE: action running

FALSE: action stopped, outputs xDone, xBusy, xError, eError,
DiagnosticInfo are reset

itfCANDriver ICANDriver Information will be retrieved from this CAN Driver

In_Out:

CANBus Example

4/10



DiagnosticInfo DIAGNOSIS_INFO Describes the diagnostic information

Output:

xDone BOOL Action successfully completed
xBusy BOOL Function block active
xError BOOL TRUE: error occurred, function block aborts action FALSE: no error
eError ERROR Error codes

3. Object Oriented POUs

The following POUs provide an object oriented way of programming with the CAN Bus API library.

3.1. CANBus_11bit

CANBus_11bit can handle frames with 11bit CAN-IDs. An instance of this function block has to be created in
order of being able to send or receive messages. The FB expects a complete structure of the type
DRIVER_CONFIG to set up the CANBus.

3.1.1. CloseCANDriver

Closes the CAN Driver. After closing, messages can’t be received or transmitted anymore.

Output:

CloseCANDriver BOOL
eError ERROR Error codes

3.1.2. DeleteReceiver

Deletes the given receiver

hReceiver CAA.HANDLE Receiver to be deleted
eError ERROR Error codes

Input:

Output:

DeleteReceiver BOOL
eError ERROR Error codes

3.1.3. GetSingleIdReceiver

Generates a receiver for filtering a single CanId. (With each call of this function a Receiver is created.
Therefore the method should not be called cyclic.)

In_Out:

SingleId RECEIVER_SINGLE_ID Structure with Bitmask

Output:

GetMaskReceiver CAA.HANDLE
eError ERROR Error codes

3.1.4. GetAreaReceiver

Creates a receiver to receive messages within a range of CAN-IDs. (With each call of this function a Receiver is
created. Therefore the method should not be called cyclic.)

In_Out:

Area RECEIVER_AREA Structure with the information of the bit masks and a range of
CAN-IDs

Output:

GetAreaReceiver CAA.HANDLE
eError ERROR Error codes

CANBus Example

5/10



3.1.5. GetMaskReceiver

Creates a mask for receiving messages. (With each call of this function a Receiver is created. Therefore the
method should not be called cyclic.)

In_Out:

Mask RECEIVER_MASK Structure with the information of the bit masks

Output:

GetMaskReceiver CAA.HANDLE
eError ERROR Error codes

3.1.6. GetBusDiagnosis

This method aggregates diagnostic information in DIAGNOSIS_INFO

In_Out:

DiagnosticInfo DIAGNOSIS_INFO This data type describes diagnostic information

Output:

GetBusDiagnosis BOOL
eError ERROR Error codes

3.1.7. ReceiveMessage

ReceiveMessage expects a valid handle to either an AreaReceiver, SingleIdReceiver or a MaskReceiver. With
receivers it is possible to filter incoming messages. If a time limit is set, the receiver will receive in each cycle
messages until the time is up. It there is no time limit set (tTimeLimit:- 0), the receiver receives messages until
the receiver buffer is empty. If the time limit is too small it might be that not all received messages are
processed and therefore the free part of the buffer gets smaller until there are no free message handles left.
Received messages will be passed to the MessageProcessor. All message information will be available there.
The MessageProcessor must be implemented by the user.

Input:

hReceiver CAA.HANDLE Either a MaskReceiver or AreaReceiver
itfMsgProcessor IMessageProcessor The Message Processor will process the read messages

according to the implementation of the user
tTimeLimit TIME The time limit for reading messages.

(T#0s means no time limit)

Output:

ReceiveMessage BOOL
eError ERROR Error codes

3.1.8. ResetBusAlarm

This method resets the CANBus if the driver is in ‘bus alarm’ state.

Output:

ResetBusAlarm BOOL
eError ERROR Error codes

3.1.9. SendMessage

In_Out:

Message MESSAGE Message information and data.

Output:

SendMessage BOOL

CANBus Example

6/10



eError ERROR Error codes

3.2. CANBus_29bit

CANBus Function Block 29 Bit can handle frames with 11bit CAN-IDs and 29bit CAN-IDs. The FB expects a
complete structure of the type DRIVER_CONFIG to set up the CANBus.

4. Structures

4.1. DRIVER_CONFIG

This data type describes the configuration of a CANbus Driver

usiNetwork USINT number of the interface (Network ID starts by 0)
uiBaudrate UINT Possible values for baud rate [kbit/s]: 10, 20, 50, 100, 125, 250, 500, 800 or 1000.
ctMessages USINT length of the message queue for outgoing messages

4.2. RECEIVER_SINGLE_ID

This structure filters the messages of a single CAN Id. If the mask parameter is TRUE, a filter in the CAN
Receiver Queue is active. Now messages are filtered according to the value parameter. Also see the examples
of RECEIVER_AREA.

dwCanId DWORD CanId
xRTRValue BOOL bit sign for RTR flag
xRTRMask BOOL mask for bit sign of xRTRValue
x29BitIdValue BOOL 29-Bit message
x29BitIdMask BOOL Mask for 29-bit message
xTransmitValue BOOL Messages sent via this adapter with the same driver.
xTransmitMask BOOL Mask for messages sent via this adapter with the same driver.
xAlwaysNewest BOOL TRUE: only the most current message will be received; FALSE: all messages

will be received

4.3. RECEIVER_AREA

This structure identifies an area for receiving CANBus frames. Please note that the Area Receiver only allows
11bit CAN-IDs. If the mask parameter is TRUE, a filter in the CAN Receiver Queue is active. Now messages are
filtered according to the value parameter.

dwIdStart DWORD first identifier of the area
dwIdEnd DWORD last identifier of the area
xRTRValue BOOL bit sign for RTR flag
xRTRMask BOOL mask for bit sign of xRTRValue
xTransmitValue BOOL Messages sent via this adapter with the same driver.
xTransmitMask BOOL Mask for messages sent via this adapter with the same driver.

Examples:

Only Transmit messages ranging between 16#100 and 16#150: dwIdStart:-16#100, dwIdEnd:-16#150,
xTransmitValue - TRUE, xTransmitMask - TRUE, all other Mask paramters - FALSE

All messages ranging between 16#0 and 16#7FF dwIdStart:-16#0, dwIdEnd:-16#7FF all mask parameters
FALSE (no further filtering is done).

All messages: dwIdStart - 0, dwIdEnd - 0, all Mask Parameter FALSE all Value Parameter FALSE

4.4. RECEIVER_MASK

The parameter canIdMask describes a bit mask for canId’s on incoming messages. The parameter canIdValue
proofs if the mask applies to the CanId of the received message. If the CanId doesn’t apply to the mask, the
message will be filtered out. For the use of the other Mask/Value parameters see the examples of
RECEIVER_AREA.

canIdValue DWORD bit sign of identifier of message
canIdMask DWORD mask for bit sign of canIdValue
xRTRValue BOOL bit sign for RTR flag
xRTRMask BOOL mask for bit sign of xRTRValue
x29BitIdValue BOOL 29-Bit message

CANBus Example

7/10



x29BitIdMask BOOL Mask for 29-bit message
xTransmitValue BOOL Messages sent via this adapter with the same driver.
xTransmitMask BOOL Mask for messages sent via this adapter with the same driver.
xAlwaysNewest BOOL TRUE: only the most current message will be received; FALSE: all messages

will be received

4.5. MESSAGE

This structure contains the information of a message. Messages of this type can be sent via CANSender (FB)
or by an instance of CANBus_11bit / CANBus_29bit.

udiCANId UDINT CAN-ID is the bitId of a CAN-frame
abyData ARRAY [0..7] OF

BYTE
Array for 0 to 7 bytes of data

usiDataLength USINT The length of the data array 0 to 8
xRTR BOOL Remote Transmission Request
xIs29BitMessage BOOL TRUE: the messages is a 29bit message, FALSE: the message is a

11bit message

4.6. RxMESSAGE

(RxMESSAGE has all elements of MESSAGE plus two additional ones)

xIsTxMessage BOOL TRUE: Messages sent via this adapter with the same driver.
udiTSP UDINT Only available if the driver supports TimeStamps. If not the value is 0. Compare

TimeStamp by calling SysTimeGetUs() function

4.7. DIAGNOSIS_INFO

This data type describes diagnostic information.

xBusAlarm BOOL Bus Alarm
usiBusLoad USINT The bus load.
eState BUSSTATE This data type describes the state of the CAN network.
uiBaudrate UINT The baud rate of the bus.
ctSendCounter CAA.COUNT The value of the send counter.
ctReceiveCounter CAA.COUNT The value of the receive counter.
ctRxErrorCounter CAA.COUNT The value of the receive error counter.
ctTxErrorCounter CAA.COUNT The value of the send error counter.
xSendingActive BOOL TRUE: the CAN hardware is busy sending CAN messages.

FALSE: all messages have already been sent.
ctLostCounter CAA.COUNT The value of the lost messages.
ctReceivePoolSize CAA.COUNT Size of the receive pool
ctReceiveQueueLength CAA.COUNT Size of the receive queue length
ctTransmitPoolSize CAA.COUNT Size of the transmit pool
ctTransmitQueueLength CAA.COUNT Size of the transmit queue length

5. Enumerations

5.1. ERROR

NO_ERROR No error occurred
INTERNAL_ERROR An error occurred in the CL2 Library.
NO_CANBUS_DRIVER Create a valid CANBus Driver for this operation
CANBUS_DRIVER_NOT_CREATED NetID might be wrong or the driver is not registered in

“GatewayPLC/CoDeSysControl.cfg”.

Example 1: 1 CAN card with 2 channels, channel 1: NetId - 0, channel
2: NetId - 1;

Example 2: 2 CAN cards: NetId depends on the order the drivers are
loaded.

NO_VALID_RECEIVER There is no valid receiver

CANBus Example

8/10



START_VALUE_GT_END Start value is greater than end value for area receiver
TIME_OUT Time out
BUS_ALARM The CAN Bus is in alarm state
MESSAGE_QUEUE_EXCEEDED The sending queue is full
ONLY_11BIT_CANID_ALLOWED CAN-IDs needs to be max. 11bit
WRONG_BOUDRATE Boudrate for CANDriver is not valid
WRONG_PARAMETER A parameter has a wrong value

5.2. BUSSTATE

UNKNOWN The state of the network is not known. Its functionality is not implemented.
ERR_FREE No occurrence of CAN bus errors so far. The error counters of the chip are zero.
ACTIVE Only few CAN bus errors so far. The error counters of the chip are below the warning level.
WARNING Occurrence of some CAN bus errors. The error counters are above the warning level.
PASSIVE Too many CAN bus errors. The error counters are above the error level.
BUSOFF The node has been separated from the CAN bus. The error counter has exceeded the

admissible maximum.

6. Examples

The example project CANBusAPIExample.project contains two implementations, one in ST, the other in CFC.
Both implement in different ways, how a CAN telegram can be received, processed and resent.

Call one of the two programs (CFC_PRG, ST_PRG) in the task manager and download the application onto
your PLC and run it. When you send a CAN telegram with appropriate ID (e.g. 0x500) from an external device,
your PLC will receive it, and send it out with the identical data content and another ID (0x501).

6.1. Example ST

Receives all incoming messages and echoes them with CAN-ID +1

Technical description

MsgProcessor_EchoST: Implements the CAN.IMessageProcessor interface. Its method ProcessMessage was
implemented by the user. In this example the method simply increments the CAN-IDs of the received messages
by 1 and writes them back to the CAN driver.

ST_PRG: Configures the CAN Driver with the DEVICE_CONFIG from g_busConfig. Also an instance of
MsgProcessor_EchoST and a MaskReceiver are created. GetMaskReceiver should only be called once
because every call generates a new MaskReceiver. With the setup of this MaskReceiver it’s possible to receive
all incoming messages. Incoming messages are automatically handed over to the previously created
msgProcessor.

6.2. Example CFC

Receives messages with CAN-IDs ranging from 16#500 to 16#550 and echoes them back with CAN-ID +1

Technical description

MsgProcessor_EchoCFC: Implements the CAN.IMessageProcessor interface. Its method ProcessMessage
was implemented by the user. In this example the method simply increments the CAN-IDs of the received
messages by 1 and writes them back to the CAN driver.

CFC_PRG: Configures the CAN Driver with the DEVICE_CONFIG from g_busConfig. Also an instance of
MsgProcessor_EchoCFC, an instance of CANBusDiagnosis and two AreaReceiver are created. With the setup
of the AreaReceivers it’s possible to receive incoming messages with the CAN-ID 16#280 and CAN-IDs ranging
from 16#500 to 16#550. These CAN-IDs can be adapted anytime. Please keep in mind that an AreaReceiver is
only able to receive messages 11bit CAN-IDs. Incoming messages are automatically handed over to the
previously created msgProcessor. With the CANBusDiagnosis it’s possible to monitor the state of the CAN
Driver.

CANBus Example

9/10



General information

Supplier:
CODESYS GmbH
Memminger Strasse 151
87439 Kempten
Germany

Support:
https://support.codesys.com

Item:
CANBus Example
Item number:
000030
Sales:
CODESYS Store
https://store.codesys.com

Included in delivery:
CODESYS software and / or license key with billing information
For training courses and events: Booking confirmation

System requirements and restrictions

Programming System CODESYS Development System Version 3.5.6.0 or higher
Runtime System CODESYS Control Version 3.5.6.0
Supported Platforms/ Devices All
Additional Requirements PLC with CAN interface
Restrictions -
Licensing

No license is required.

Note: Not all CODESYS features are available in all territories. For more information on geographic restrictions,
please contact sales@codesys.com.
Note: Technical specifications are subject to change. Errors and omissions excepted. The content of the
current online version of this document applies.

CANBus Example

10/10

https://support.codesys.com
https://store.codesys.com

	CANBus Example
	Product description
	1. Interface IMessageProcessor
	1.1. ICANDriver

	2. Graphical POUs
	2.1. CANDriver_11bit (FB)
	2.2. CANDriver_29bit (FB)
	2.3. CANSender
	2.4. CANSingleIdReceiver
	2.5. CANMaskReceiver
	2.6. CANAreaReceiver
	2.7. CANBusDiagnosis

	3. Object Oriented POUs
	3.1. CANBus_11bit
	3.2. CANBus_29bit

	4. Structures
	4.1. DRIVER_CONFIG
	4.2. RECEIVER_SINGLE_ID
	4.3. RECEIVER_AREA
	4.4. RECEIVER_MASK
	4.5. MESSAGE
	4.6. RxMESSAGE
	4.7. DIAGNOSIS_INFO

	5. Enumerations
	5.1. ERROR
	5.2. BUSSTATE

	6. Examples
	6.1. Example ST
	6.2. Example CFC


	General information
	System requirements and restrictions


